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A HIGH ORDER DISCONTINUOUS GALERKIN METHOD FOR 2D

INCOMPRESSIBLE FLOWS

JIAN-GUO LIU� AND CHI-WANG SHUy

Abstract. In this paper we introduce a high order discontinuous Galerkin method for two dimensional

incompressible ow in vorticity streamfunction formulation. The momentum equation is treated explicitly,

utilizing the e�ciency of the discontinuous Galerkin method. The streamfunction is obtained by a standard

Poisson solver using continuous �nite elements. There is a natural matching between these two �nite element

spaces, since the normal component of the velocity �eld is continuous across element boundaries. This allows

for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy

conservation with no numerical dissipation and total enstrophy stability. The method is suitable for inviscid

or high Reynolds number ows. Optimal error estimates are proven and veri�ed by numerical experiments.
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1. Introduction and the Setup of the Scheme. We are interested in solving the following 2D time

dependent incompressible Euler equations in vorticity streamfunction formulation:

!t +r � (u!) = 0

� = !; u = r? ;(1.1)

u � n = given on @
;

where r? = (�@y; @x). Notice that the boundary condition, plus the fact that u � n = @ 
@�
, recovers  on

the boundary (up to a constant) in a simple connected domain

 
��
@

=  b:(1.2)

We are also interested in solving the Navier-Stokes equations with high Reynolds numbers Re� 1:

!t +r � (u!) =
1

Re
�!

� = !; u = r? ;(1.3)

u = given on @
:

The boundary condition is now (1.2) plus the non-slip type boundary condition:

@ 

@n

����
@


= ub;� :(1.4)

For simplicity, we only consider the no-ow, no-slip boundary conditions  b = 0;ub;� = 0 and periodic

boundary conditions.
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We �rst emphasize that, for Euler equations (1.1) and high Reynolds number (Re � 1) Navier-Stokes

equations (1.3), it is advantageous to treat both the convective terms and the viscous terms explicitly. The

methods discussed in this paper are stable under standard CFL conditions. Since the momentum equation

(the �rst equation in (1.1) and (1.3)) is treated explicitly in the discontinuous Galerkin framework, there is

no global mass matrix to invert, unlike conventional �nite element methods. This makes the method highly

e�cient for parallel implementation, see for example [2]. As any �nite element method, our approach has the

exibility for complicated geometry and boundary conditions. The method is adapted from the Runge-Kutta

discontinuous Galerkin methods discussed by Cockburn et al. in a series of papers [7], [8], [9], [10], [11], [12],

[20] and [6].

The main di�culties in solving incompressible ows are the incompressibility condition and boundary

conditions. The incompressibility condition is global and is thus solved by the standard Poisson solver for

the streamfunction  using continuous �nite elements. One advantage of our approach is that there is no

matching conditions needed for the two �nite element spaces for the vorticity ! and for the streamfunction

 . The incompressibility condition, represented by the streamfunction  , is exactly satis�ed pointwise, and

is naturally matched with the convective terms in the momentum equation. The normal velocity u � n is

automatically continuous along any element boundary, allowing for correct upwinding for the convective

terms and still maintaining a total energy conservation and total enstrophy stability.

There is an easy proof for stability, both in the total enstrophy and in the total energy, which does not

depend on the regularity of the exact solutions. For smooth solutions error estimates can be obtained.

Our method, as it stands, can only compute 2D ows. Similar approach for the primitive variable

formulation, suitable for 3D calculations, is under investigation.

We do not advocate our method for modest or low Reynolds number ows. In such regime viscosity

terms should be treated implicitly for e�ciency. This is a much more challenging task in terms of space

matching characterized by the Babu�ska-Brezzi-Ladyzenskaja condition, projection type methods, and global

vorticity boundary conditions, see for example [3], [17], [25], [27], [18], [19], [24], etc.

For convection dominated ows, as we are interested in this paper, we mention the work of Bell et al.

[1] for second order Godunov type upwinding methods, see also Levy and Tadmor [22] and E and Shu [16].

This is still an active �eld for research.

We now describe the setup of the scheme. We start with a triangulation Th of the domain 
, consisting

of polygons of maximum size (diameter) h, and the following two approximation spaces

V kh =
�
v : v

��
K
2 P k(K); 8K 2 Th

	
; W k

0;h = V kh \ C0(
);(1.5)

where P k(K) is the set of all polynomials of degree at most k on the cell K.

For the Euler equations (1.1), the numerical method is de�ned as follows: �nd !h 2 V
k
h and  h 2 W

k
0;h,

such that

h@t !h viK � h!h uh � rviK +
X
e2@K

huh � nc!h v�ie = 0; 8v 2 V kh ;(1.6)

�hr h � r'i = h!h 'i; 8' 2 W k
0;h;(1.7)

with the velocity �eld obtained from the stream function by

uh = r?  h:(1.8)
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Here h�i is the usual integration over either the whole domain 
 or a subdomain denoted by a subscript.

Same thing for k � k for the L2 norm.

Notice that the normal velocity uh �n is continuous across any element boundary e, but both the solution

!h and the test function v are discontinuous there. We take the values of the test function from within the

element K, denoted by v�. The solution at the edge is taken as a single valued ux c!h, which can be either

a central or a upwind biased average. For example, the central ux is de�ned by

c!h = 1
2

�
!+h + !�h

�
(1.9)

where !+h is the value of !h on the edge e from outside K, the complete upwind ux is de�ned by

c!h = ( !�h if uh � n � 0;

!+h if uh � n < 0:
(1.10)

and the Lax-Friedrichs upwind biased ux is de�ned by

uh � nc!h = 1
2

�
uh � n

�
!+h + !�h

�
� �

�
!+h � !�h

��
(1.11)

where � is the maximum of juh � nj either locally (local Lax-Friedrichs) or globally (global Lax-Friedrichs).

We remark that, for general boundary conditions (1.2), the space W k
0;h in (1.5) should be modi�ed to

take the boundary value into consideration. Moreover, additional physical vorticity boundary condition for

any inlet should be known.

Navier-Stokes equations (1.3) can be handled in a similar way, with the additional viscous terms treated

by the local discontinuous Galerkin technique in [12], and with a local vorticity boundary condition in [13].

The detail is left to Sect. 3. Sect. 2 is devoted to the discussion of stability and error estimates for the Euler

equations. Accuracy check and numerical examples are given in Sect. 4. Concluding remarks are given in

Sect. 5.

2. Stability and Error Estimates for the Euler Equations. For stability analysis, we take the

test function v = !h in (1.6), obtaining

d

dt

1

2
k!hk

2
K � 1

2
hr � (!2huh)iK +

X
e2@K

huh � nc!h !�h ie = 0;

where we have used the exact incompressibility condition satis�ed by uh for the second term. Performing

an integration by parts for the second term, we obtain

d

dt

1

2
k!hk

2
K +

X
e2@K

huh � n
�c!h !�h � 1

2
(!�h )

2
�
ie = 0:

Now, using the fact that

!� = ! � 1

2
[!]; (!�)2 = !2 � ![!];

where

! = 1

2
(!+ + !�); [!] = !+ � !�;

we obtain

d

dt

1

2
k!hk

2
K +

X
e2@K

huh � n
�c!h!h � 1

2
!2h
�
ie +

1

2

X
e2@K

huh � n [!h]
�
!h �c!h�ie = 0;
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Notice that the second term is of opposite sign for adjacent elements sharing a common edge e, hence it

becomes zero after summing over all the elements K (using the no-ow boundary condition on the physical

boundary). The third term is the numerical dissipation: when c!h is taken as the central ux (1.9), the third
term is exactly zero; for the upwind ux (1.10), the third term becomes a positive quantity

1

4

X
e2@K

hjuh � nj [!h]
2ie(2.1)

which is the total enstrophy dissipation. The e�ect of this is to control the size of the jump across the element

interface and essentially \gluing" the solution there. Other upwind biased uxes such as the Lax-Friedrichs

ux (1.11) would produce a similar positive term as the total enstrophy dissipation. For smooth ows these

jumps are of the order O(hk) within the truncation error of the scheme. We thus obtain the the following

enstrophy inequality

d

dt
k!hk

2 � 0;(2.2)

which becomes an equality if the central ux (1.9) is used.

The stability for the velocity �eld is now straightforward: we take ' =  h in (1.7) to obtain:

hr h � r hi = �h!h  hi � k hkk!hk � Ckr hkk!hk

by the Poincare inequality, which implies

kuhk = kr hk � Ck!hk:(2.3)

Indeed, we can obtain a total energy conservation through the following arguments. Taking v =  h in (1.6),

we obtain

h@t!h  hiK � h!huh � r hiK +
X
e2@K

huh � nc!h  hie = 0;

Now the second term is zero since uh � r h = 0. The third term vanishes after summing over all elements

since  h is continuous. Finally, noticing that

�h@t!h  hi =
d

dt

1

2
kr hk

2 =
d

dt

1

2
kuhk

2;

we obtain the conservation of energy

d

dt
kuhk = 0(2.4)

even for a upwind ux. Thus there is no numerical dissipation for the energy.

We now turn to the error estimates. For these we would need to assume that the solution is regular.

Conceptionally, since this is a �nite element method, the exact solution of the PDE satis�es the scheme

exactly. As usual, we de�ne the two projection operators: P is the standard L2 projection into the space

V kh ; and � is the standard projection into W k
0;h:

hr( �� ) � r'i = 0; 8' 2 W k
0;h:

Denote the error functions by

" = ! � !h; � =  �  h
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and their projections by

"h = P " = P ! � !h; �h = � � = � �  h:

We �rst obtain a control of �h in terms of ":

hr� � r'i = �h" 'i; 8' 2W k
0;h

from the scheme (1.7) and the fact that the exact solution also satis�es (1.7). Now, taking ' = �h, we obtain

hr�h � r�hi = hr� � r�hi = �h" �hi ;

which gives

kr�hk � Ck"k :

This leads to a bound for the velocity �eld

ku� uhk = kr( �  h)k � kr( �� )k+ kr(� �  h)k

� kr( �� )k+ Ck"k :(2.5)

Since both the numerical solution and the exact solution satisfy (1.6),

h@t" viK � h(!u� !huh) � rviK +
X
e2@K

h(u � n! � uh � nc!h) v�ie = 0; 8v 2 V kh(2.6)

Take v = "h. The second term becomes

h(!u� !huh) � r"hiK = h!(u� uh) � r"hiK + h"uh � r"iK � h"uh � r(! � P!)iK :(2.7)

Noticing that u�uh is exactly divergence free, we may perform integration by parts to the �rst term on the

right side of (2.7) to obtain

h! (u� uh) � r"hiK = �h"h(u� uh) � r!iK +
X
e2@K

h(u� uh) � n! "
�

h ie:

The second term on the right side of (2.7) is a complete derivative, hence can be integrated to give a pure

boundary term

h"uh � r"iK =
1

2

X
e2@K

huh � n("
�)2ie

Plugging all these into (2.6) with v = "h, and collecting boundary terms, we obtain

h@t"h "hiK + h"h(u� uh) � r!iK + h"uh � r(! � P!)iK +
X
e2@K

Ie = 0

where the boundary terms

Ie = �h(u� uh) � n! "
�

h ie �
1

2
h(uh � n ("

�)2ie + h(u � n! � uh � nc!h) "�h ie
= huh � n

�b" "�h � 1
2
("�)2

�
ie

= huh � n
�b" "� � 1

2
("�)2

�
ie � huh � n b" �! � (P!)�

�
ie :
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Using the stability analysis in (2.2), we are left with

d

dt

1

2
k"hk

2 �
X
K

�
�h"h(u� uh) � r!iK � h"uh � r(! � P!)iK

+
X
e2@K

huh � n b" �! � (P!)�
�
ie

�
:

(2.8)

Assuming for the moment uh1 � C ;(2.9)

we can �rst estimate the boundary termX
K

X
e2@K

huh � n b" �! � (P!)�
�
ie �

X
K

X
e2@K

Ck[P!]kekb"ke
� k"k2 +

C

h

X
K

X
e2@K

k[P!]k2e :

Using the above inequality together with (2.5) and (2.8), we now obtain

d

dt
k"hk

2 � C

 
k"hk

2 + kr( �� )k2 + k! � P!k2H1 +
1

h

X
K

X
e2@K

k[P!]k2e

!
:

Here we understand the norms as a summation of the same norm on eachK. Using the standard interpolation

theory [5], we obtain

d

dt
k"hk

2 � C k"hk
2 + Ch2k

which yields

k"hk � C hk:

Together with (2.5), we have

ku� uhk+ k! � !hk � C hk:(2.10)

Using an inverse inequality, we have

ku� uhk1 � Chk�1

this justi�es the a priori assumption (2.9).

The estimate (2.9) is optimal in terms of the space W k
0;h, which is important since the main cost for the

scheme is in the Poisson solver in W k
0;h. The vorticity estimate in (2.9) is however suboptimal with respect

to the space V kh . If we use W k+1
0;h instead for the streamfunction and the upwind ux (1.10), then a more

detailed analysis will produce an order O(hk+
1
2 ) for the error in !, see [21] and [12] for details. However, we

do not recommend this choice in practice, as the increase of half order accuracy is obtained with the price

of one degree higher polynomials in the most expensive part of the algorithm, namely the Poisson solver.

In our numerical experiments in Sect. 5, we observe that close to (k + 1)-th order of accuracy is generally

achieved when k-th degree polynomials are used in both the discontinuous space for ! and the continuous

space for  , both for uniform and for non-uniform meshes.
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3. The Scheme for the Navier-Stokes Equations. For the Navier-Stokes equations (1.3), there are

two additional ingredients needing our attention:

1. The viscous terms cannot be directly implemented in the discontinuous space V kh . Instead, the stress

tensor is �rst obtained locally using the same discontinuous Galerkin framework.

2. Vorticity boundary values are not known physically. We obtain vorticity boundary conditions locally

from the streamfunction using the kinematic relation in (1.3).

We use the same �nite element spaces V kh and W k
0;h de�ned in (1.5) for the vorticity and streamfunction,

respectively. Denote, by V k0;h, the subspace of V
k
h with zero value at the boundary nodes. Let W k

h be the

�nite element spaces extended fromW k
0;h with general non-zero values at the boundary nodes. The numerical

method now becomes:

h@t !h viK � h!h uh � rviK +
X
e2@K

huh � nc!h v�ie = �h�h � rviK +
X
e2@K

hf�h � n v�ie; 8v 2 V k0;h(3.1)

Notice that the test function is now in V k0;h, (see [15]), and the stress tensor �h 2
�
V kh
�2

is obtained from

the vorticity !h by the same discontinuous Galerkin framework:

Re h�h viK = �h!hr � viK +
X
e2@K

hf!hv� � nie ; 8v 2
�
V kh
�2
:(3.2)

The uxes f�h and f!h can be chosen as central averages

f�h = 1
2

�
��h + �+h

�
; f!h = 1

2

�
!�h + !+h

�
(3.3)

or better still, as alternate one-sided uxes, namely, at each edge e with an arbitrarily �xed orientation, one

of f�h and f!h is taken as the left value and the other taken as the right value. It can be veri�ed that, for

k = 0 and a rectangular triangulation, the central uxes (3.3) produce a wide stencil central approximation

to the second derivatives (!i�2, !i and !i+2 are used for approximating !xx), while the alternate one-sided

uxes produce a compact stencil central approximation (!i�1, !i and !i+1 are used for approximating !xx).

Also, numerical and theoretical evidence shows that the alternate one-sided uxes produce more accurate

results [12]. In this paper we use only the alternate one-sided uxes for the viscous terms.

We advocate the same steps as in [15] for a �nite element method. In the time stepping, we �rst compute

the vorticity at the interior nodes, and we will use these values to compute a stream function and then we use

the stream function to determine the vorticity at the boundary nodes. This time-stepping is very e�cient

and we do not need any iteration between the boundary vorticity value and interior values, thus eliminating

some traditional di�culties associated with the vorticity formulation. This time-stepping was �rst developed

for �nite-di�erences in [13, 14].

Since (3.1) is treated explicitly, The value of !n+1 is computed via two steps. First, we compute

h!n+1h viK for all v 2 V k0;h from the explicitly time stepping of (3.1). The value of !n+1h at the interior

element can now be directly computed from this term. However, the value of !n+1h at the boundary element

shall be determined after we computed the stream function as we explain below.

These values, h!n+1h viK for all v 2 V k0;h, is su�cient to be used to compute the stream function from

�hr n+1h � r'i = h!n+1h 'i; 8' 2W k
0;h;(3.4)

with the velocity �eld obtained from the stream function by

un+1h = r?  n+1h :(3.5)
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We now describe how to get the vorticity at the boundary cells. Since  n+1h is known, we can compute

�hr n+1h � r'i = h!n+1h 'i;

for the test function ' at the boundary nodes. We can then use it to compute the value of vorticity at the

boundary elements.

For problems with periodic boundary conditions, the formulation above admits the following stability

results:

d

dt
k!hk

2 + 2k�hk � 0;(3.6)

which in turn implies stability for the velocity �eld (2.3). The proof is similar to the Euler case, see [12]

for the details. With the vorticity boundary condition mentioned above, we are unable to obtain a stability

estimate. However, this type of vorticity boundary treatment for conventional �nite di�erence and �nite

elements is stable, see [14] and [15].

4. Accuracy Check and Numerical Examples. We implement our method on triangulations based

on rectangles. When a P k result is referred to it is obtained with P k elements for the vorticity ! and Qk

elements for the streamfunction  . Strictly speaking Qk elements should also be used for the vorticity !

for the exact energy conservation (2.4) to hold, however to save cost we use P k elements for the vorticity

! instead. Energy stability (2.3) and enstrophy stability (2.2) still hold in this case. We have used both

the upwind ux (1.10) and the (global) Lax-Friedrichs ux (1.11) for the calculations, however we will only

show the results obtained with the Lax-Friedrichs ux to save space. The time discretization is by the third

order positive Runge-Kutta methods in [26].

Example 1: This example is used to check the accuracy of our schemes, both for the Euler equations (1.1)

and for the Navier-Stokes equations (1.3) with Re = 100, for both the periodic and the Dirichlet boundary

conditions, and with both a uniform mesh and a non-uniform mesh. The non-uniform mesh is obtained by

alternating between 0:9�x and 1:1�x for the mesh sizes in the x direction, similarly for the mesh sizes in

the y direction. The initial condition is taken as

!(x; y; 0) = �2 sin(x) sin(y);(4.1)

which was used in [4]. The exact solution for this case is known:

!(x; y; t) = �2 sin(x) sin(y)e�
2t

Re :(4.2)

We use the domain [0; 2�]� [0; 2�] for the periodic case and [0; �]� [0; �] for the Dirichlet case and compute

the errors at t = 2 for the periodic case and at t = 1 for the Dirichlet case. We list in Table 4.1 (uniform

mesh) and Table 4.2 (non-uniform mesh) the L1 and L1 errors, at t = 2, measured at the center of the cells,

for the periodic boundary conditions. Table 4.3 (uniform mesh) and Table 4.4 (non-uniform mesh) contain

the results with the Dirichlet boundary conditions at t = 1. We remark that, because of the di�erence in

the sizes of the domains of the periodic and Dirichlet cases, the errors with the same number of cells are of

di�erent values, but the orders of accuracy are similar. We have also computed the errors of the relevant

derivatives at the centers of the cells, which help in giving us truly L1 errors throughout the domain. We

will not show them to save space.
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Table 4.1

Accuracy test, uniform meshes, periodic boundary conditions.

Euler Navier-Stokes with Re = 100

mesh L1 error order L1 error order L1 error order L1 error order

P1

162 7.77E-03 | 1.80E-02 | 7.65E-03 | 1.82E-02 |

322 1.01E-03 2.94 2.46E-03 2.87 1.03E-03 2.89 2.55E-03 2.83

642 1.28E-04 2.99 3.14E-04 2.97 1.36E-04 2.92 3.44E-04 2.89

1282 1.60E-05 3.00 3.94E-05 2.99 1.80E-05 2.92 4.63E-05 2.89

P2

162 6.26E-04 | 1.58E-03 | 2.06E-04 | 5.85E-04 |

322 5.52E-05 3.50 2.75E-04 2.52 1.37E-05 3.90 3.24E-05 4.17

642 4.82E-06 3.52 3.81E-05 2.85 2.40E-06 2.51 4.10E-06 2.98

1282 4.04E-07 3.58 4.96E-06 2.94 4.05E-07 2.57 6.44E-07 2.67

P3

162 9.74E-05 | 2.31E-04 | 9.68E-05 | 2.33E-04 |

322 6.81E-06 3.84 1.67E-05 3.79 6.22E-06 3.96 1.50E-05 3.96

642 4.36E-07 3.96 1.05E-06 3.99 3.82E-07 4.02 9.25E-07 4.02

1282 2.71E-08 4.01 6.59E-08 3.99 2.33E-08 4.04 5.70E-08 4.02

Table 4.2

Accuracy test, non-uniform meshes, periodic boundary conditions.

Euler Navier-Stokes with Re = 100

mesh L1 error order L1 error order L1 error order L1 error order

P1

162 8.49E-03 | 2.85E-02 | 7.77E-03 | 2.80E-02 |

322 1.44E-03 2.56 5.56E-03 2.36 1.16E-03 2.75 5.45E-03 2.36

642 2.81E-04 2.36 1.13E-03 2.29 2.17E-04 2.42 1.03E-03 2.40

1282 5.90E-05 2.25 2.59E-04 2.13 4.13E-05 2.40 1.94E-04 2.41

P2

162 7.88E-04 | 2.77E-03 | 3.37E-04 | 1.18E-03 |

322 7.82E-05 3.33 4.11E-04 2.75 1.78E-05 4.24 6.40E-05 4.21

642 7.66E-06 3.35 5.15E-05 3.00 2.63E-06 2.76 6.97E-06 3.20

1282 7.43E-07 3.37 6.11E-06 3.07 4.34E-07 2.60 1.00E-06 2.80

P3

162 1.03E-04 | 3.26E-04 | 1.01E-04 | 3.24E-04 |

322 7.18E-06 3.84 2.60E-05 3.65 6.52E-06 3.96 2.14E-05 3.92

642 4.60E-07 3.96 1.77E-06 3.88 4.01E-07 4.02 1.28E-06 4.06

1282 2.86E-08 4.01 1.09E-07 4.02 2.44E-08 4.03 7.70E-08 4.06
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Table 4.3

Accuracy test, uniform meshes, Dirichlet boundary conditions.

Euler Navier-Stokes with Re = 100

mesh L1 error order L1 error order L1 error order L1 error order

P1

162 5.92E-04 | 1.23E-03 | 5.75E-04 | 1.32E-03 |

322 8.19E-05 2.85 1.92E-04 2.68 7.52E-05 2.94 1.78E-04 2.89

642 1.06E-05 2.94 5.35E-05 1.84 9.63E-06 2.96 3.76E-05 2.25

1282 1.35E-06 2.98 1.42E-05 1.92 1.25E-06 2.94 8.06E-06 2.22

P2

162 4.76E-05 | 2.57E-04 | 1.51E-05 | 4.05E-05 |

322 4.28E-06 3.47 3.57E-05 2.85 2.49E-06 2.60 6.09E-06 2.73

642 3.74E-07 3.52 4.65E-06 2.94 4.11E-07 2.60 9.42E-07 2.69

1282 3.17E-08 3.56 5.92E-07 2.97 6.16E-08 2.74 1.34E-07 2.81

P3

162 6.80E-06 | 1.58E-05 | 6.34E-06 | 1.53E-05 |

322 4.22E-07 4.01 1.06E-06 3.90 3.90E-07 4.02 9.45E-07 4.02

642 2.66E-08 3.99 6.90E-08 3.94 2.38E-08 4.04 5.81E-08 4.02

1282 1.66E-09 4.00 4.25E-09 4.02 1.46E-09 4.03 3.59E-09 4.02

Table 4.4

Accuracy test, non-uniform meshes, Dirichlet boundary conditions.

Euler Navier-Stokes with Re = 100

mesh L1 error order L1 error order L1 error order L1 error order

P1

162 1.12E-03 | 4.35E-03 | 9.93E-04 | 4.25E-03 |

322 2.44E-04 2.20 9.79E-04 2.15 1.95E-04 2.35 8.74E-04 2.28

642 5.61E-05 2.12 2.39E-04 2.04 3.90E-05 2.33 1.75E-04 2.32

1282 1.36E-05 2.04 6.29E-05 1.92 7.76E-06 2.33 3.54E-05 2.31

P2

162 7.54E-05 | 3.31E-04 | 1.98E-05 | 6.63E-05 |

322 8.15E-06 3.21 4.33E-05 2.93 2.61E-06 2.93 7.03E-06 3.24

642 8.46E-07 3.27 5.35E-06 3.02 4.35E-07 2.59 1.02E-06 2.79

1282 8.31E-08 3.35 6.56E-07 3.03 6.52E-08 2.74 1.49E-07 2.78

P3

162 7.17E-06 | 2.49E-05 | 6.65E-06 | 2.18E-05 |

322 4.46E-07 4.01 1.66E-06 3.91 4.09E-07 4.02 1.31E-06 4.06

642 2.80E-08 3.99 1.04E-07 3.99 2.50E-08 4.03 7.86E-08 4.06

1282 1.75E-09 4.00 6.89E-09 3.92 1.53E-09 4.02 4.77E-09 4.04
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We can clearly see from these tables that close to (k+1)-th order of accuracy is generally achieved when

k-th degree polynomials are used in both the discontinuous space for ! and for the Poisson solver, both for

the uniform and for the non-uniform meshes.

Example 2: The double shear layer problem taken from [1]. We solve the Euler equation (1.1) in the

domain [0; 2�]� [0; 2�] with a periodic boundary condition and an initial condition:

!(x; y; 0) =

(
� cos(x) � 1

�
sech2((y � �=2)=�) y � �

� cos(x) + 1
�
sech2((3�=2� y)=�) y > �

(4.3)

where we take � = �=15 and � = 0:05.

The solution quickly develops into roll-ups with smaller and smaller scales, so on any �xed grid the full

resolution is lost eventually. We use �xed uniform meshes of 64� 64 and 128� 128 rectangles and perform

the calculation up to t = 8. We plot the time history of total energy (square of the L2 norm of velocity u)

and total enstrophy (square of the L2 norm of vorticity !) in Fig. 4.1, as well as contours of the vorticity ! at

t = 6 in Fig. 4.2 and at t = 8 in Fig. 4.3 to show the resolution. We can see from Fig. 4.1 that the numerical

dissipation decreases roughly in the order of P 1 642, P 1 1282, P 2 642, P 3 642, P 2 1282, and P 3 1282. The

higher order methods have better resolutions and in general the resolution is quite good judging from the

contours. We remark that when the numerical viscosity becomes too small with higher order methods, since

the schemes are linear, numerical oscillations are unavoidable when resolution to sharp fronts is lost, leading

to instability. This is common for all linear schemes. However, the discontinuous Galerkin method we use

here is able to get stable solutions for much sharper fronts with the same mesh than central type �nite

di�erence or �nite element methods. More extensive numerical resolution study for this example can be

found in [23]. For a comparison with nonlinear ENO schemes, we refer to [16].
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Fig. 4.1. The time history of energy (square of the L2 norm of the velocity u) and total enstrophy (square of the L2 norm

of vorticity !). P 1 with 642 mesh in solid line, P 1 with 1282 mesh in dashed line, P 2 with 642 mesh in dash-dot line, P 2 with

1282 mesh in dotted line, P 3 with 642 mesh in long dashed line, and P 3 with 1282 mesh in dash-dot-dot line.

Example 3: The vortex patch problem. We solve the Euler equation (1.1) in [0; 2�] � [0; 2�] with the
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following initial condition:

!(x; y; 0) =

8><>:
�1; �

2
� x � 3�

2
; �

4
� y � 3�

4
;

1; �
2
� x � 3�

2
; 5�

4
� y � 7�

4
;

0; otherwise

(4.4)

and periodic boundary conditions. The contour plots of vorticity !, with 30 equally spaced contour lines

between ! = �1:1 and ! = 1:1, are given in Fig. 4.4 for t = 5 and in Fig. 4.5 for t = 10. We can see that

the scheme gives stable results for all runs, and higher order schemes give better resolutions for vorticity.

5. Concluding Remarks. We have developed a high order discontinuous Galerkin method for the two

dimensional incompressible Euler and Navier-Stokes equations in the vorticity streamfunction formulation,

coupled with a standard continuous �nite element solution of the Poisson equation for the streamfunction.

A natural matching between the two �nite element spaces allows us to obtain total energy conservation and

total enstrophy stability. Numerical examples are shown to demonstrate the accuracy and resolution of the

methods.
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Fig. 4.2. Contour of vorticity ! at t = 6. 30 equally spaced contour lines between ! = �4:9 and ! = 4:9. Left: results

with 642 mesh; Right: results with 1282 mesh. Top: P
1; middle: P

2, bottom: P
3.
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Fig. 4.3. Contour of vorticity ! at t = 8. 30 equally spaced contour lines between ! = �4:9 and ! = 4:9. Left: results

with 642 mesh; Right: results with 1282 mesh. Top: P
1; middle: P

2, bottom: P
3.
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30 equally spaced contours from -1.1 to 1.1
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Fig. 4.4. Contour of vorticity ! at t = 5. 30 equally spaced contour lines between ! = �1:1 and ! = 1:1. Left: results

with 642 mesh; Right: results with 1282 mesh. Top: P
1; middle: P

2, bottom: P
3.
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Vorticity at t=10, P1, 642 mesh
30 equally spaced contours from -1.1 to 1.1
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Fig. 4.5. Contour of vorticity ! at t = 10. 30 equally spaced contour lines between ! = �1:1 and ! = 1:1. Left: results

with 642 mesh; Right: results with 1282 mesh. Top: P
1; middle: P

2, bottom: P
3.
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